INTRODUCTION TO ALGEBRAIC NUMBER THEORY 2018 – MIDTERM EXAM

- Questions are worth 112 points. You will be graded out of 100 (i.e. a score greater than 100 is treated as 100). In particular you can skip questions worth a total of 12 points.
- You are allowed one handwritten A4 sheet (both sides) in the hall.

Problem 1 (4 points each). Answer in True/False. If the statement is False, give a counter example (or a proof/explanation). If it is True, no proof is necessary.

- (1) In any ring R the ideal (0) is a prime ideal.
- (2) The prime ideals of the ring $\mathbb{Z}[i]$ are of the form (f) with $f \in \mathbb{Z}[i]$ where either f = 0 or f is an irreducible.

(Recall that an element $f \neq 0$ of a ring R is said to be an irreducible if any decomposition f = gh with $g, h \in R$ implies that one of g, h is a unit.)

- (3) Let K denote the field $\mathbb{Q}(X,Y)$ or the field $\mathbb{F}_p(X,Y)$. Let L be the finite extension $K(X^{\frac{1}{p}},Y^{\frac{1}{p}})$. Then there is an $\alpha \in L$, such that $L = K(\alpha)$.
- (4) An Artinian ring has finitely many prime ideals. (Recall that a Noetherian ring is said to be Artinian if all prime ideals are maximal).
- (5) Let R be a Dedekind domain, and I be a non-zero ideal of R. Then the fractional ideal J such that $I \cdot J = R$ is unique.
- (6) Let $R \subset R'$ be a ring extension. Then the set $\{r \in R' \mid r \text{ integral over } R\}$ is a subring of R'.
- (7) Let S be a subset of a ring R which is multiplicatively closed. Then the mapping $I \mapsto S^{-1}I$ from {ideals I of R such that $I \cap S$ is empty} to {ideals of $S^{-1}R$ } is bijective.
- (8) Let \mathcal{O}_K denote the ring of integers of a number field K. Then it is possible that $\mathcal{O}_K \cap \mathbb{Q}$ is a strictly larger set than \mathbb{Z} .

Problem 2 (14 points). Prove Nakayama's Lemma. That is, show the following: Let R be a local ring and the unique maximal ideal of R be denoted as \mathfrak{m} . Let M be a finitely generated R-module and $N \subset M$ a submodule such that $M = \mathfrak{m}M + N$. Then N = M.

Problem 3 (14 points). Let L/K be an extension of number fields and let \mathcal{O}_K respectively \mathcal{O}_L denote ring of integers in K respectively L. For $x \in \mathcal{O}_L$ show that $N_{L/K}(x)$ is a unit in \mathcal{O}_K if and only if x is a unit in \mathcal{O}_L .

Problem 4 (14 points). Let $K = \mathbb{Q}(\sqrt{d})$ where *d* is not-necessarily square free. Compute the ring of integers \mathcal{O}_K of *K*.

Problem 5 (14 points). Let \mathcal{O}_K denote the ring of integers in a number field K and $p \in \mathbb{Z}$ be a prime number. Let $p \cdot \mathcal{O}_K = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ where $\mathfrak{P}_i \subset \mathcal{O}_K$ denotes prime ideal such that $e_i \in \mathbb{Z}$ and $e_i > 0$. Show that $\{\mathfrak{P}_1, ..., \mathfrak{P}_r\}$ is precisely the set of prime ideals \mathfrak{Q} such that $\mathfrak{Q} \cap \mathbb{Z} = (p)$.

Problem 6 (12 points each). Let L be a number field and \mathcal{O}_L be its ring of integers.

- (1) Let $x \in \mathcal{O}_L$ be non-zero. Show that $\frac{N_{L/\mathbb{Q}}(x)}{r} \in \mathcal{O}_L$.
- (2) Let L be a number field and $a \in \mathbb{Z}$. Let X be the set of ideals $\{(x) \subset \mathcal{O}_L \mid N_{L/\mathbb{Q}}(x) = a\}$. Show that $|X| \leq |\mathcal{O}_L/(a)|$.